Subject programme

WSG

- 1. Subject name / subject module: Digital Circuits
- 2. Lecture language: English
- 3. The location of the subject in study plans:
 - Area or areas of the studies: Computer Engineering and Mechatronics
 - Degree of the studies: 1st degree studies
 - Field or fields (implementation of effects standard): Mechatronics
- 4. Supervision of subject implementation:
 - The Institute / Another unit: Institute of Informatics and Mechatronics
 - The person responsible for the subject: Grad Piotr, dr inż.
 - People cooperating in the development of the programme of the subject:
- 5. The number of hours and forms of teaching for individual study system and the evaluation method

	Teaching activities with the tutor																			
Mode		Form of classes														Total				
of study		SOW	ECTS	Laboratory work	SOW	ECTS		sow	ECTS		sow	ECTS		SOW	ECTS	 SOW	ECTS	 SOW	ECTS	ECTS
Full-time studies				32	43	2														3
Part-time studies						5														ר
Credit rigor				Graded assig	nmer	ıt														

6. Student workload – ECTS credits balance 1 ECTS credit corresponds to 25-30 hours of student work needed to achieve the expected learning outcomes including the student's own work

Activity (please specify relevant work for the subject)	Hourly student work- load (full-time stud- ies/part-time studies)
Participation in laboratory classes	32
Preparing for laboratories	25
Independent study of the subject	16
Participation in an exam / graded assignment / final grading	2
Total student workload (TSW)	75
ECTS credits	3
* Student's workload related to practical forms	75
Student's workload in classes requiring direct participation of academic teachers	32

7. Implementation notes: recommended duration (semesters), recommended admission requirements, relations between the forms of classes:

Electronics

Recommended duration of the subject is taken from the course plan.

8. Specific learning outcomes – knowledge, skills and social competence

Spe	cific learning outcomes for the subject			Methods for testing of (checking, assessing) learning outcomes		
Outcome sym- bol	Outcome description	Form	Teaching method			
		Knowle	dge			
K_W05	A student possesses sufficient knowledge of electronics, and electrical engineering, necessary to understand, at an advanced level, the complex dependencies in digital electronics and to apply this knowledge in practice through the use of appropriate meth A student possesses adequate theoretical	Laboratory work	inquiry methods, expository methods	Class tasks		
K_W08	and practical knowledge on topics related to the design of digitalc circuits.					
		Skill	S			
K_U15	A student possesses sufficient skills to select and use appropriate methods, components, and tools - in accordance with the given specification - to design and implement a	Laboratory work	inquiry methods, expository methods	Class tasks		

simple device or system that requires the use of digital signals and compontents.

WSG

9. Assessment rules / criteria for each form of education and individual grades

0% - 50%	ndst	81% - 90%	db
51% - 70%	dst	91% - 93%	db+
71% - 80%	dst+	94% - 100%	bdb

Activity	Grades	Calculation	To Final
Laboratory tasks	Example: db; bdb; bdb; db (4; 5; 5; 4)	4 * 12.5% + 5 * 12.5% + 5 * 12.5% + 4 * 12.5% = 2.25	2.25

10. The learning contents with the form of the class activities on which they are carried out

(Laboratory work)

- 1. Electric Circuit Theory Review;
- 2. Digital and Analog.;
- 3. Number Systems;
- 4. Common Logic Gates : AND, OR, NOT gates, ICs.;
- 5. Common Logic Gates (II): NAND, NOR. ICs, Troubleshooting;
- 6. Combinational Logic. Theorems of Boolean Algebra. DeMorgan's Theorem. The Uniting Theorem;
- 7. NAND/NOR Universality.;
- 8. XOR, XNOR, Parity Circuits;
- 9. Boolean Cubes. Mapping Truth Tables onto Boolean Cubes;
- 10. Karnaugh Maps;

11. Binary Addition and Subtraction, Two's Complement System and Arithmetic, BCD Arithmetic, Half and Full Adders, Adder ICs, Adder/Subtractor, ALU;

- 12. Comparators, Decoding/Encoding, Code Converters, MUXs, DeMUXs;
- 13. Hazards;
- 14. A Sequential System;

15. Sequential Logic; Registers; SR Latch; D, JK, T Flip Flops; MS and Edge Triggering; IC Flip Flops; Octal FF chip; FF Function Tables;

- 16. Sequential Circuit Analysis, Ripple Counters, Modulus, Divide-by-n Counters,;
- 17. Synchronous Counters;

18. TTL Family, Totem Pole and Open Collector Outputs, CMOS Family, Interfacing Logic Families, Auto Delay Gate, Auto Reset Circuit, Schmitt Trigger, Debouncing, Pull-up Resistors;

- 19. Introduction to PLD;
- 20. Introduction to VHDL.
- 11. Required teaching aids

Laboratory classes - specialist laboratory

- 12. Literature:
 - a. Basic literature:

1. Ulrich Tietze, Christoph Schenk, Eberhard Gamm; Electronic Circuits; ISBN 978-3-540-78655-9; Springer, Berlin, Heidelberg 2008

2. Jean-Pierre Deschamps, Elena Valderrama, Lluís Terés; Digital Systems; ISBN 978-3-319-41198-9; Springer, Cham 2017

a. Supplementary literature:

1. Brock J. LaMeres; Introduction to Logic Circuits & Logic Design with VHDL; ISBN 978-3-319-34195-8; Springer, Cham 2017

2. Hassan Salmani; Trusted Digital Circuits; ISBN 978-3-319-79081-7; Springer, Cham 2018

Subject programme

WSG

- 3. Vaibbhav Taraate; Digital Logic Design Us
- **b.** Internet sources:
 - 1. SparkFun Tutorials learn.sparkfun.com
 - 2. Electronics Notes www.electronics-notes.com
 - 3. Electronic Design www.electronicdesign.com
 - 4. EE Times www.eetimes.com
 - 5. EDN www.edn.com
 - 6. Nuts and Volts www.nutsvolts.com/magazine/article/April2016_Beginner-Guide-to-Digital-Electronics
- **13.** Available educational materials divided into forms of class activities (Author's compilation of didactic materials, e-learning materials, etc.)
- 14. Teachers implementing particular forms of education

Form of education	Name and surname
1. Laboratory classes	Grad Piotr, dr inż.